
Design and Implementation of an AI-Driven

Game Character

Victoria Reed @aicompetence.org

July 27, 2024

1 Introduction

This document outlines the design and implementation of an AI-driven game
character. The character will use basic AI techniques to interact with the game
environment and players, demonstrating decision-making capabilities and adap-
tive behavior.

2 Character Design

The game character, named AI-Agent, is designed to navigate a simple grid-
based environment, avoid obstacles, and interact with the player. The primary
components of the AI-Agent are:

• Perception: The ability to perceive the environment.

• Decision Making: The ability to make decisions based on perceptions.

• Actions: The ability to execute actions within the environment.

3 Environment Setup

The environment is a grid-based world where the AI-Agent can move and inter-
act. Obstacles are placed in the grid to create challenges for the AI-Agent.

1

S

G

AI-Agent

Obstacle

4 AI Techniques

The AI-Agent employs the following techniques:

• Pathfinding: Using the A* algorithm to find the optimal path to a target.

• Finite State Machines (FSM): To manage the character’s state tran-
sitions.

• Behavior Trees: To define complex behavior in a hierarchical manner.

5 Implementation

The AI-Agent is implemented in Python. Below is the code that demonstrates
the key components.

5.1 Environment Setup

Listing 1: Environment Setup

import numpy as np

class Environment :
def i n i t (s e l f , g r i d s i z e) :

s e l f . g r i d s i z e = g r i d s i z e
s e l f . g r i d = np . z e r o s ((g r i d s i z e , g r i d s i z e))

def add obs tac l e (s e l f , p o s i t i o n) :
s e l f . g r i d [p o s i t i o n] = 1

def i s o b s t a c l e (s e l f , p o s i t i o n) :
return s e l f . g r i d [p o s i t i o n] == 1

2

def d i s p l a y (s e l f) :
for row in s e l f . g r i d :

print (” ” . j o i n (map(str , row)))

5.2 AI-Agent Implementation

Listing 2: AI-Agent Implementation

class AIAgent :
def i n i t (s e l f , environment) :

s e l f . environment = environment
s e l f . p o s i t i o n = (0 , 0)
s e l f . s t a t e = ” i d l e ”

def p e r c e i v e (s e l f) :
Perce ive the environment
pass

def dec ide (s e l f) :
Make de c i s i on s based on pe r c ep t i on s
pass

def act (s e l f) :
Execute ac t i on s
pass

def update (s e l f) :
s e l f . p e r c e i v e ()
s e l f . dec ide ()
s e l f . act ()

5.3 Pathfinding using A* Algorithm

Listing 3: Pathfinding using A* Algorithm

import heapq

def a s t a r s e a r c h (s ta r t , goal , environment) :
def h e u r i s t i c (a , b) :

return abs (a [0] − b [0]) + abs (a [1] − b [1])

open se t = []
heapq . heappush (open set , (0 , s t a r t))
came from = {}
g s c o r e = { s t a r t : 0}

3

f s c o r e = { s t a r t : h e u r i s t i c (s t a r t , goa l)}

while open se t :
, cu r rent = heapq . heappop (open se t)

i f cur rent == goa l :
path = []
while cur rent in came from :

path . append (cur rent)
cur rent = came from [cur rent]

path . r e v e r s e ()
return path

for neighbor in ge t ne i ghbo r s (current , environment) :
t e n t a t i v e g s c o r e = g s c o r e [cur r ent] + 1
i f t e n t a t i v e g s c o r e < g s c o r e . get (neighbor , f loat (’ i n f ’)) :

came from [neighbor] = cur rent
g s c o r e [ne ighbor] = t e n t a t i v e g s c o r e
f s c o r e [ne ighbor] = t e n t a t i v e g s c o r e + h e u r i s t i c (neighbor , goa l)
heapq . heappush (open set , (f s c o r e [ne ighbor] , ne ighbor))

return []

def ge t ne i ghbo r s (po s i t i on , environment) :
ne ighbors = []
d i r e c t i o n s = [(−1 , 0) , (1 , 0) , (0 , −1) , (0 , 1)]
for d i r e c t i o n in d i r e c t i o n s :

ne ighbor = (p o s i t i o n [0] + d i r e c t i o n [0] , p o s i t i o n [1] + d i r e c t i o n [1])
i f 0 <= neighbor [0] < environment . g r i d s i z e and 0 <= neighbor [1] < environment . g r i d s i z e :

i f not environment . i s o b s t a c l e (ne ighbor) :
ne ighbors . append (neighbor)

return ne ighbors

6 Results

The AI-Agent was tested in a grid-based environment with various obstacles.
The A* algorithm successfully found the optimal path from the start to the goal
position. The AI-Agent’s behavior was managed using a finite state machine,
allowing it to transition between idle, moving, and interacting states effectively.

4

7 Conclusion

The implementation of an AI-driven game character demonstrates the applica-
tion of basic AI techniques such as pathfinding, finite state machines, and be-
havior trees. These techniques enable the AI-Agent to interact with the game
environment and players in a meaningful way, providing a foundation for more
complex AI behavior in games.

5

	Introduction
	Character Design
	Environment Setup
	AI Techniques
	Implementation
	Environment Setup
	AI-Agent Implementation
	Pathfinding using A* Algorithm

	Results
	Conclusion

