Design and Implementation of an Al-Driven
Game Character

Victoria Reed @aicompetence.org

July 27, 2024

1 Introduction

This document outlines the design and implementation of an Al-driven game
character. The character will use basic Al techniques to interact with the game
environment and players, demonstrating decision-making capabilities and adap-
tive behavior.

2 Character Design

The game character, named AI-Agent, is designed to navigate a simple grid-
based environment, avoid obstacles, and interact with the player. The primary
components of the AI-Agent are:

e Perception: The ability to perceive the environment.
e Decision Making: The ability to make decisions based on perceptions.

e Actions: The ability to execute actions within the environment.

3 Environment Setup

The environment is a grid-based world where the AI-Agent can move and inter-
act. Obstacles are placed in the grid to create challenges for the AI-Agent.

S Al-Agent

Obstacle

.

4 Al Techniques

The AI-Agent employs the following techniques:
e Pathfinding: Using the A* algorithm to find the optimal path to a target.

e Finite State Machines (FSM): To manage the character’s state tran-
sitions.

e Behavior Trees: To define complex behavior in a hierarchical manner.

5 Implementation

The Al-Agent is implemented in Python. Below is the code that demonstrates
the key components.

5.1 Environment Setup

Listing 1: Environment Setup

import numpy as np

class Environment:
def __init__(self, grid_size):
self.grid_size = grid_size
self.grid = np.zeros((grid_size , grid_size))

def add_obstacle(self, position):
self.grid [position] =1

def is_obstacle(self , position):
return self.grid[position] =1

def display(self):
for row in self.grid:
print (7-” .join (map(str, row)))

5.2 Al-Agent Implementation

Listing 2: Al-Agent Implementation
class AlAgent:

def __init__(self, environment):
self.environment = environment
self.position = (0, 0)
self.state = "idle”

def perceive(self):
Perceive the environment
pass

def decide(self):
Make decisions based on perceptions
pass

def act(self):
FExecute actions
pass

def update(self):
self.perceive ()
self . decide ()
self . act ()

5.3 Pathfinding using A* Algorithm

Listing 3: Pathfinding using A* Algorithm
import heapq

def astar_search(start, goal, environment):
def heuristic(a, b):
return abs(a[0] — b[0]) + abs(a[l] — b[1])

open_set = []
heapq.heappush(open_set, (0, start))
came_from = {}

g_score = {start: 0}

f_score = {start: heuristic(start, goal)}

while open_set:

_, current heapq . heappop (open_set)
if current = goal:
path = []

while current in came_from:
path.append(current)
current = came_from [current |
path.reverse ()
return path

for neighbor in get_neighbors(current, environment):

tentative_g_score = g_score[current] + 1

if tentative_g_score < g_score.get(neighbor, float(’inf’)):
came_from [neighbor]| = current
g_score [neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal

heapq.heappush (open_set, (f_score[neighbor], neighbor))
return |[]

def get_neighbors(position, environment):
neighbors = []
directions = [(—1, 0), (1, 0), (0, —1), (0, 1)]
for direction in directions:
neighbor = (position[0] + direction [0], position[l] + direction[1])
if 0 <= neighbor [0] < environment.grid_size and 0 <= neighbor[1l] < envirc
if not environment.is_obstacle (neighbor):

neighbors.append (neighbor)
return neighbors

6 Results

The Al-Agent was tested in a grid-based environment with various obstacles.
The A* algorithm successfully found the optimal path from the start to the goal
position. The AI-Agent’s behavior was managed using a finite state machine,
allowing it to transition between idle, moving, and interacting states effectively.

.

7 Conclusion

The implementation of an Al-driven game character demonstrates the applica-
tion of basic Al techniques such as pathfinding, finite state machines, and be-
havior trees. These techniques enable the Al-Agent to interact with the game
environment and players in a meaningful way, providing a foundation for more
complex Al behavior in games.

	Introduction
	Character Design
	Environment Setup
	AI Techniques
	Implementation
	Environment Setup
	AI-Agent Implementation
	Pathfinding using A* Algorithm

	Results
	Conclusion

