Applying Deep Deterministic Policy Gradient
(DDPG) to a Continuous Action Space Problem

aicompetence.org

August 4, 2024

1 Introduction

Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy actor-
critic algorithm that is particularly well-suited for continuous action spaces. In
this example, we demonstrate how to apply DDPG to control a pendulum using
the Pendulum-v1 environment from OpenAl Gym.

2 Environment Setup

The Pendulum-v1 environment is a classic problem where the goal is to swing
up a pendulum so that it stays upright. The state space includes the angle and
angular velocity of the pendulum, while the action space consists of a continuous
force applied to the pendulum.

3 DDPG Implementation

The DDPG algorithm is implemented using the stable-baselines3 library,
which provides a straightforward interface for applying reinforcement learning
algorithms.

4 Python Code

The following code demonstrates how to set up and train a DDPG agent to
solve the pendulum control problem:

Listing 1: DDPG applied to the Pendulum problem
import gym
from stable_baselines3 import DDPG
from stable_baselines3.common.noise import NormalActionNoise
import numpy as np

Create the environment
env = gym.make('Pendulum—v1’)

Define the action noise (to encourage exploration)
n_actions = env.action_space.shape[—1]
action_noise = NormalActionNoise (mean=np. zeros(n_actions), sigma=0.1 * np.ones(n

Create the DDPG model
model = DDPG(” MlpPolicy”, env, action_noise=action_noise, verbose=1)

Train the agent
model.learn (total_timesteps=100000)

Save the model
model. save (”ddpg_pendulum”)

Load the model
model = DDPG. load (” ddpg_pendulum”)

Test the trained agent
obs = env.reset ()
for _ in range(1000):
action , _states = model.predict (obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render ()
if done:
obs = env.reset ()

env. close ()

5 Explanation

e Environment Setup: The environment is created using the gym.make
function, which initializes the Pendulum-v1 environment.

e Action Noise: To encourage exploration, Gaussian noise is added to the
actions taken by the agent. This noise is parameterized by a mean and
standard deviation.

e Model Creation: The DDPG model is created using the MlpPolicy,
which defines a multi-layer perceptron policy. The model is trained by
interacting with the environment for 100,000 timesteps.

e Model Testing: After training, the model is saved and then reloaded for
testing. The agent interacts with the environment, and the pendulum’s

behavior is visualized using the env.render () function.

6 Conclusion

This example demonstrates how DDPG can be effectively applied to a contin-
uous action space problem. The pendulum problem serves as a fundamental
benchmark, and the same approach can be extended to more complex environ-
ments with continuous actions.

	Introduction
	Environment Setup
	DDPG Implementation
	Python Code
	Explanation
	Conclusion

